Tuesday, July 8, 2014

IX Std Term I - Chapter 3- Ex 3.3


Exercise 3.3

 

1.      Find the quotient and remainder of the following division.

(1)   (5x3 - 8x2 + 5x - 7) ÷ (x - 1)

Solution:

     
                       5x2 – 3x + 2
                     ________________
  x – 1| 5x3 - 8x2 + 5x – 7                           
                    |5x3 -  5x2
                    |-     +
                    |------------------------
                    |       - 3x2 + 5x
                    |       - 3x2 + 3x
                    |       +       -
                    |------------------------
                    |                  2x – 7
                    |                  2x – 2
                    |                 -     +
                    |------------------------
                    |                       - 5      

 
Quotient = 5x2 – 3x + 2

Remainder = - 5

----------------------------------------------------------------------------------------------------------

(2)   (2x2 -  3x - 14) ÷ (x + 2)

Solution:
(i)                  2x2/x = 2x
(ii)               2x(x + 2) = 2x2 +4x
(iii)             -7x/x = -7
(iv)             -7(x+2) = -7x – 14
     
        2x - 7
            ___________
 
        x+2| 2x2 - 3x 14           
              | 2x2 +4x
              |-      -
              |--------------------
              |        -7x – 14
              |        -7x – 14
              |        +     +
              |--------------------
              |                 0

Quotient = 2x - 7

Remainder = 0

----------------------------------------------------------------------------------------------------------

(3)   (9 + 4x + 5x2 +  3x3 ) ÷ (x + 1)

Solution:

Writing the given polynomial in descending order, we get

(3x3 + 5x2 + 4x + 9) ÷ (x + 1)

         

(i)                 3x3/x = 3x2
(ii)               3x2(x+ 1) = 3x3 + 3x2
(iii)             2 x2/x = 2x
(iv)             2x(x + 1) = 2 x2 + 2x
(v)               2x/x = 2
(vi)             2(x + 1) = 2x + 2
    
                  3x2 + 2x + 2
                   ______________
            x + 1| 3x3 + 5x2 + 4x + 9
                      | 3x3 + 3x2
                     | -     -
                     |-------------------------
                     |           2x2 + 4x
                     |           2 x2 + 2x
                     |           -       -
                     |-------------------------
                     |                      2x + 9
                     |                      2x + 2
                     |                     -     -
                     |-------------------------
                     |                             7
 
  
           Quotient = 3x2 + 2x + 2

Remainder = 7

        ---------------------------------------------------------------------------------------------------------
     (4)   (4x3 -  2x2 +  6x +  7) ÷ (3 + 2x)

Solution:

Writing the given polynomials in descending order, we get

(4x3 - 2x2 +  6x +  7) ÷ (2x + 3)

(i) 4x3/2x = 2x2
(ii) 2x2(2x + 3) = 4x3 + 6x2
(iii) - 8x2/2x = - 4x
(iv) – 4x(2x + 3) = - 8x2 – 12x
(v) 18x/2x = 9
(vi) 9(2x + 3) = 18x +27
 
          
                2x2 – 4x + 9
                    ________________
            2x + 3| 4x3 - 2x2 +  6x +  7
                      | 4x3 + 6x2
                      |-      -
                      |-----------------------------
                      |        - 8x2 + 6x
                      |        - 8x2 – 12x
                      |        +      +    
                      |-----------------------------
                      |           18x + 7            
                      |                     18x +27
                      |           -       -  
                      |-----------------------------
                      |                            - 20
                         

Quotient = 2x2 – 4x + 9

Remainder = - 20
           -----------------------------------------------------------------------------------------------------------

(5)   ( -18 - 9x + 7x2 ) ÷ (x - 2)

Solution:

Writing the given polynomial in descending order, we get
             (7x2 – 9x – 18) ÷ (x – 2)
 
(i) 7x2/x = 7x
(ii) 7x(x – 2) = 7x2 – 14x
(iii) 5x/x = 5
(iv) 5(x – 2) = 5x - 10
 
             7x + 5
                    ____________
            x – 2| 7x2 – 9x – 18
                    | 7x2 – 14x
                    |-      +
                    |---------------------
                    |         5x - 18  
                    |         5x - 10     
                    |        -     +
                    |----------------------
                    |              - 8
            

Quotient = 7x + 5

Remainder = - 8

------------------------------------------------------------------------------------------------------------

Monday, July 7, 2014

IX Std Term I - Chapter 3 - Ex 3.2


Exercise 3.2

 1. Find the zeros of the following polynomials.

 (i)                 p(x) = 4x – 1

Solution:

Given that,

p(x) = 4x – 1 = 4(x -1/4)  

p(1/4) = 4(1/4 - 1/4) = 0

Hence, 1/4  is the zero of p(x).
-----------------------------------------------------------------------------------------------------
(ii)               p(x) = 3x + 5

Solution:

Given that,

p(x) = 3x + 5 = 3(x + 5/3)

p(-5/3) = 3(-5/3 + 5/3) = 0

Hence, - 5/3 is the zero of p(x).
-------------------------------------------------------------------------------------------------------
(iii)             p(x) = 2x

Solution:

Given that,

p(x) = 2x

p(0) = 2 × 0 = 0

Hence, 0 is the zero of p(x).
---------------------------------------------------------------------------------------------------------
(iv)             p(x) = x + 9

Solution:

Given that,

p(x) = x + 9

p(-9) = -9 + 9 = 0

Hence, -9 is the zero of p(x).

        --------------------------------------------------------------------------------------------
2. Find the roots of the following polynomial equations.
 
(i)                 x - 3 = 0

Solution:

x – 3 = 0

ð  x = 3

 ------------------------------------------------------------------------------------------------------
(ii)               5x - 6 = 0

Solution:

5x – 6 = 0

ð  5x = 6

ð  x = 6/5 
--------------------------------------------------------------------------------------------------------
(iii)             11x + 1 = 0

Solution:

11x + 1 = 0

ð  11x = -1

ð     x  = - 1/11



 

-----------------------------------------------------------------------------------------
(iv)             -9x = 0

Solution:

-9x = 0

ð  x = 0/-9    

ð  x = 0

----------------------------------------------------------------------------------------
3. Verify whether the following are roots of the polynomial equations indicated against them.

(i)                 x2 -  5x + 6 = 0; x = 2, 3

Solution:

Let p(x) = x2 -  5x + 6 = 0


P(2) = 22 – (5 × 2) + 6 = 4 – 10 +6 = 0

Hence, x = 2 is the root of p(x).

P(3) = 32 – (5× 3) + 6 = 9 – 15 + 6 = 0

Hence, x = 3 is the root of p(x).  
 
-------------------------------------------------------------------------------------------------------
(ii)               x2 + 4x + 3 = 0; x = -1, 2

Solution:

Let p(x) = x2 + 4x + 3 = 0


P(-1) = (-1)2 + (4× (-1)) + 3 = 1 – 4 + 3 = 0

Hence, x = -1 is the root of p(x).

P(2) = 22 + (4 × 2) + 3 = 4 +8 + 3 = 15 ≠ 0

Hence, x = 2 is not the root of p(x).

------------------------------------------------------------------------------------------------------
(iii)             x3 - 2x2 - 5x + 6 = 0; x = 1, -2, 3

Solution:

Let p(x) = x3 - 2x2 - 5x + 6 = 0


P(1) = 13 – (2 × 12) – (5 × 1) + 6 = 1 – 2 – 5 + 6 = 0

Hence, x = 1 is the root of p(x).

P(-2) = (-2)3 – (2 × (-2)2) – (5 × (-2)) + 6 = -8 – 8 + 10 + 6 = 0

Hence, x = -2 is the root of p(x).

P(3) = 33 – (2× (3)2) – (5 × 3) + 6 = 27 – 18 – 15 + 6 = 0

Hence, x = 3 is the root of p(x).
--------------------------------------------------------------------------------------------------------
(iv)             x3 -  2x2 x + 2 = 0; x = -1, 2, 3

Solution:

Let p(x) = x3 - 2x2 x + 2 = 0

 
P(-1) = (-1)3 – (2 × (-1)2) – (-1) + 2 = -1 - 2 + 1 + 2 = 0

Hence, x = -1 is the root of p(x).

P(2) = (2)3 – (2 × 22) – 2 + 2 = 8 – 8 - 2 + 2 = 0

Hence, x = 2 is the root of p(x).

P(3) = (3)3 – (2 × 32) – 3 + 2 = 27 – 18 – 3 + 2 = 8 ≠ 0

Hence, x = 3 is not the root of p(x).
----------------------------------------------------------------------------------------