Exercise 3.2
Solution:
Given that,
p(x) = 4x – 1 = 4(x -1/4)
p(1/4) = 4(1/4 - 1/4) = 0
Hence, 1/4
is the zero
of p(x).
-----------------------------------------------------------------------------------------------------
(ii)
p(x) = 3x + 5
Solution:
Given that,
p(x) = 3x + 5 = 3(x + 5/3)
p(-5/3) = 3(-5/3 + 5/3) = 0
Hence, - 5/3 is the zero of
p(x).
-------------------------------------------------------------------------------------------------------
(iii)
p(x) = 2x
Solution:
Given that,
p(x) = 2x
p(0) = 2 × 0 = 0
Hence, 0 is the zero of
p(x).
---------------------------------------------------------------------------------------------------------
(iv)
p(x) = x + 9
Solution:
Given that,
p(x) = x + 9
p(-9) = -9 + 9 = 0
Hence, -9 is the zero of
p(x).
--------------------------------------------------------------------------------------------
2. Find the roots of the
following polynomial equations.
(i)
x - 3 = 0
Solution:
x – 3 = 0
ð
x = 3
------------------------------------------------------------------------------------------------------
(ii)
5x - 6 = 0
Solution:
5x – 6 = 0
ð
5x = 6
ð
x = 6/5
--------------------------------------------------------------------------------------------------------
(iii)
11x + 1 = 0
Solution:
11x + 1 = 0
ð
11x = -1
ð
x = - 1/11
-----------------------------------------------------------------------------------------
(iv)
-9x = 0
Solution:
-9x = 0
ð
x = 0/-9
ð
x = 0
----------------------------------------------------------------------------------------
3. Verify whether the
following are roots of the polynomial equations indicated against them.
(i)
x2
- 5x +
6 =
0; x = 2, 3
Solution:
Let p(x) = x2 - 5x +
6 =
0
P(2) = 22 – (5 × 2) + 6 = 4 – 10 +6 =
0
Hence, x
= 2 is the root of p(x).
P(3) = 32 – (5× 3) + 6 = 9 – 15 + 6 =
0
Hence, x
= 3 is the root of p(x).
-------------------------------------------------------------------------------------------------------
(ii)
x2
+ 4x + 3 = 0; x = -1, 2
Solution:
Let p(x) = x2 + 4x + 3 = 0
P(-1) = (-1)2 + (4× (-1)) + 3 = 1 – 4
+ 3 = 0
Hence, x
= -1 is the root of p(x).
P(2) = 22 + (4 × 2) + 3 = 4 +8 + 3 =
15 ≠ 0
Hence, x
= 2 is not the root of p(x).
------------------------------------------------------------------------------------------------------
(iii)
x3 - 2x2 - 5x
+ 6 = 0; x = 1, -2, 3
Solution:
Let
p(x) = x3 - 2x2 - 5x
+ 6 = 0
P(1) = 13 – (2 ×
12) – (5 × 1) + 6 = 1 – 2 – 5 + 6 = 0
Hence, x = 1 is the root of p(x).
P(-2) = (-2)3 –
(2 × (-2)2) – (5 × (-2)) + 6 = -8 – 8 + 10 + 6 = 0
Hence, x = -2 is the root of p(x).
P(3) = 33 – (2×
(3)2) – (5 × 3) + 6 = 27 – 18 – 15 + 6 = 0
Hence, x = 3 is the root of p(x).
--------------------------------------------------------------------------------------------------------
(iv)
x3 - 2x2 – x + 2 = 0; x = -1, 2, 3
Solution:
Let p(x) = x3 - 2x2 – x + 2 = 0
P(-1) = (-1)3 –
(2 × (-1)2) – (-1) + 2 = -1 - 2 + 1 + 2 = 0
Hence, x = -1 is the root of p(x).
P(2) = (2)3 – (2
× 22) – 2 + 2 = 8 – 8 - 2 + 2 = 0
Hence, x = 2 is the root of p(x).
P(3) = (3)3 – (2
× 32) – 3 + 2 = 27 – 18 – 3 + 2 = 8 ≠ 0
Hence, x = 3 is not the root of p(x).
----------------------------------------------------------------------------------------
No comments:
Post a Comment
Leave your valuable comments here....